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System realization is the construction of a state-space model given input-output 
data of a system. One approach, briefly summarized here, is the subspace method. 
In the deterministic realization problem, the data are used in a linear fashion, 
whereas the stochastic realization problem uses quadratic forms in the data. This 
dichotomy is related to the basic assumptions of repeatability or nonrepeatability 
of the input-output experiments performed on the system. In particular, the logic 
of the system is constructed, closely following the axiomatic foundations of 
physics. It is shown that this logic is Boolean in the deterministic and quantal 
in the stochastic case. The system dynamics is obtained from the data-induced 
measures one can define on the lattice. 

1. I N T R O D U C T I O N  

Many models of  reality for use in engineering and science are constructed 
from established natural laws. The immediate applications are to (i) explain 
the past, (ii) predict the future, and (iii) control. For many systems, however, 
the cause and effect relationship is either too complicated or too obscure to 
yield a practical representation. This motivates the need for empirical methods 
of  finding black-box models. 

The usefulness o f  any model is determined not only by its predictive 
power or accuracy, but also by its mathematical tractability. Because of  this, 
linear time-invariant (LTI) systems have been intensively studied. Modeling 
the system dynamics  f rom such classical representations as its transfer func- 
tion (frequency response) or its impulse response is a relatively simple prob- 
lem in theory (Kailath, 1980). However,  these are idealized representations, 
and are often unavailable in practice. One therefore seeks a more pragmatic 
approach. A promising strategy in modeling o f  LTI systems from input-output  
data is the subspace method. A close inspection of  the algorithm reveals that 
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in the deterministic case, these data are used in a linear fashion, while for 
the stochastic case, the data are used quadratically. In this paper we shall 
explain this fundamental difference by relating it to the logic of the system 
and the measures defined on it. 

In Section 2, we pose the realization problem in detail for the class of 
linear time-invariant systems. The subspace approach toward the solutions 
for the deterministic and stochastic realization problems is summarized in 
Section 3. In Section 4, an interpretation based on the underlying logic is given 
in both problems. Deterministic realization relates to stochastic realization as 
classical logic to quantum logic. This indicates that quantum structures are 
also prevalent in other well-established disciplines such as signal processing 
and time series analysis. 

2. REALIZATION PROBLEM 

For simplicity of the exposure, it is assumed that a system Z is accessed 
via a scalar-valued input and produces a scalar output, and that the interactions 
(transitions, measurements) occur at discrete instants only. All these restric- 
tions are removable in the complete theory. 

Assume that the only concrete knowledge one has about the system is 
its consecutive input and output data. It is not necessary that one can actually 
set (control) the inputs, but it is assumed that whatever goes in can be 
measured. Assume further that contextual information suggests time (as mea- 
sured by counting the transitions) invariance. 

The goal is to describe the input and output data by a simpler rule, using 
a compressed set of parameters and expressed in a mathematically tractable 
form. The class of linear time-invariant state-space model is chosen, i.e., 
the form 

Xk+l = Axk + Buk + Wk 
Yk Cx~ + Duk + vk 

(1) 

Time invariance manifests itself in the constancy of the matrices of equation 
(1). The w(t) and v(t) are the 'residuals' due to imprecision in the measure- 
ments, or incorrectness of the model class assumption, e.g., if environmental 
interactions with the system are purposely neglected. The free parameters in 
the model are the model order n as well as A, B, C, and D. 

The realization problem consists in retrieving these free parameters from 
the sequences { uk}, { Yk} in the deterministic case, and augmenting them with 
the stochastic parameters (covariances) of the environmental interactions 
in the stochastic case. 
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3. S U B S P A C E  M E T H O D  

One considers in the deterministic problem, the sequence of input-  
output pairs 

d k = [ U k  l y k  

and forms its associated (block) Hankel matrix 

dl d2 "'" dr ] 
! 

di+l ''" dzT-1 

�9 Ul U2 

/~T btT+I 
= p  

Yl Y2 

YT YT+t 

UT 

U2T-I 

YT 

YZT- I 

(2) 

where P is a (row) permutation matrix�9 The relevance of the above Hankel 
matrix is easily explained as follows: From the underlying model (1) the 
generated (nominal) data sequence of length T is 

[ Yk~ CA CB D 
: = . X k -}- : " . .  

LYk+T,_i L c A , - ' j  CA - B . . .  

uk+l (3) 
�9 ~ �9 i 

c 8  DJLU +T_, 
or 03 = Gx + ~-~. Let us now assume that many (identical) systems are 
placed in parallel, each with its own input sequence 0gu~ and generating the 
corresponding output sequence ~ for i = 1 . . . . .  N. Putting likewise the 
individual relations (3) for each i in parallel, one obtains in matrix form 

[0~1 . . . . .  0]JU] : C[X(1) . . . . .  x(N)] -~ ~ - [ ~ |  . . . . .  0~U] (4 )  

or ~ = G~" + ~ .  To work with a statistically representative sample, N 
must be larger than the number of consecutive data points (T) in the sequence. 
In practice, an ensemble of systems may not be available. An artificial 
ensemble of input/output data parallel experiments can be made from one 
long data sequence via time shifting. If ~1)  is the sequence of T consecutive 
output samples starting at k, then ~z )  is the sequence of T consecutive 
samples starting with Yk+l. Regardless of how the ensemble data is generated, 
the data are organized in a so-called data matrix, 
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It was shown that under some conditions (observability and sufficient excita- 
tion of the modes by the inputs) (De Moor et al., 1988), the property 

rank(H) = rank(~) + n (6) 

holds, where n is the order of the underlying system (1) that generated the 
data. What is now involved in the subspace realization algorithm.'? First, one 
determines the state vectors (a basis for the state space). Numerically, singular 
value decomposition of the data matrix is used. Then, consistently with the 
data and the derived state vectors, a quadruple (A, B, C, D) is obtained as 
the solution to a total least squares problem (Van Huffel and Vandewalle, 
1991). This two-part solution is now briefly described. 

State Space Basis 

One forms two consecutive data matrices 

= ~ ~ = P - -  ( 7 )  
Hi L d~l)+T-I ,N) 

"'" dr+r- ,  L ~ l ]  

= ! ! = P - -  (8) 
/-/2 Id les t - , - ' .  k%_l 

Applying the rank property (6 ) to  H, , / /2 ,  and H = [,"'], the system order n 

can be inferred, and one can derive, invoking Grassmann's dimension theo- 
rem, that the state space is the intersection X2 = Spanrow(H~) N Spanrow(Hs). 
Although in general the rowspaces may not intersect due to finite precision, 
a likely intersection may be found using the powerful singular value decompo- 
sition (SVD) technique. Any basis for this rowspace is then a realization of X2. 

System Matrices 

With any choice of a basis for X2, a realization quadruple corresponds via 

Y~T "'" Y~.m++r J D J L u ~ r  . . .  u~.~+rJ 

This is an overdetermined set of equations (since N is large), and is solved 
in the least squares sense, or better, the total least squares sense (since the 
left- and right-hand-side matrices have similar accuracies, and are therefore 
equally perturbable). The residuals are the {wk} and {vk} noise terms in the 
original model. It was shown in Moonen et al. (1989) that the explicit 
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computation of X2 may be bypassed in practice. Indeed the known matrices on 
the left- and fight-hand sides of equation (9) can be replaced by, respectively, 
H d*r and H~ er, which are derived via the SVD on the original data matrices. 

The important conclusion is that the observed data are used in a linear 
fashion in the construction of a state space model. 

Now consider the stochastic realization problem. Conceptually, the mea- 
sured input and output data are different from the actual input and output in 
the system. The difference is usually ascribed to noise, and the methodology 
is known as the error-in-variables configuration. In a white noise model, 
these perturbations are assumed to have zero mean and be timewise uncorre- 
lated. The covariance information of these input and output fluctuations is 
summarized in the covariance matrix 

[+++ .+]_+ o (10) 

Essentially, the free system parameters (A, B, C, D) representing the actual 
dynamics in such a stochastic model are augmented with the stochastic 
parameters (Q, R, S). 

Using this probabilistic model, a first step in the solution to this stochastic 
realization is to obtain the correlations of the fluctuations 

f ,~\  

t+,~/ 

and form the Hankel matrix mstoc h of this correlation sequence. Letting the 
above-described subspace algorithm loose on this data matrix, one finds a 
quadruple (A, B, C, D). The stochastic parameters are obtained by solving 
for P, Q, R, and R in a set of linear matrix equalities with the positive 
semidefiniteness constraint of (10) and P > 0. When working with empirical 
data, the exact correlations are not available, and one has to work with the 
sample covariances. This means that the algorithm uses the original data in 
a quadratic fashion. 

One sees a fundamental difference in the usage of the experimental data. 
It is a matter of using the observed or measured variables linearly versus 
quadratically. Also, if the experimenter only has the experimental data avail- 
able, then what prompts the choice deterministic versus stochastic model? 

We will turn to the logic of the system to partially get an answer to 
these questions. Why the data are used linearly or quadratically can be 
resolved this way, but one will always have to make a basic assumption as 
to whether the experiment is repeatable or not at the onset. This of course 
is where inductive reasoning enters modeling. 
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4. INTERPRETATION IN QS 

In order to try to explain the linear-quadratic dichotomy, we give an 
axiomatic setup for systems (Verriest, 1992), which closely parallels the 
modern axiomatic foundations of physics (Beltrametti and Cassinelli, 1981; 
Piron, 1990). 

The observable quantities (attributes) of a system (i.e., its input and 
output) or environmental variables are considered primordial. Observable 
means here that the experimenter can extract information from these. This 
process is called a measurement. It is assumed that physical measurements 
can resolve whether or not the value assumed by the variable lies in some 
preset (by the experimenter/observer) interval B (or a finite set if the observ- 
able assumes discrete values), and that there is no reaction from the measure- 
ment to the variable. Once a variable has been measured, the information is 
not erased, but the stage is set for perhaps another measurement. Measure- 
ments are "yes-no"  experiments, but at a lower level than considered by 
Macky. We shall call the study of the relations among measurements on 
variables the kinematics. All propositions that can be made about a set of 
past measurements form a Boolean lattice. 

By afilter we understand a device that 'accepts' a system if the measure- 
ment falls within a preset interval. Acceptance is with respect to consequent 
use, as member of a particular set. The filter uk E B describes an ensemble 
of systems, all having the property that at time k the input value belonged 
to B. 

Now we pass from the kinematics of variables to the dynamics of a 
system. A physical preparation of a system relates to the notion of a filter. 
Only these copies of an ensemble of systems are accepted (for further consid- 
eration) that passed a fixed filter (on input and/or output). In a control point 
of view, e.g., if one has access (externally, via u) to the system, only copies 
of the ensemble are considered that have this same input (as can be measured 
and accepted by a filter tuned to this input). From a 'selection' point of view, 
a filter characterized by a finite sequence of data (d~ . . . . .  dr), strictly 
speaking, a sequence of data intervals, is chosen. In this passive way, only 
the systems passing this filter are retained for further scrutiny. The notion 
of preparation allows the transition from the kinematics to the dynamics in 
the theory. Let II denote the set of all preparations. Next we consider the 
propositional system. 

A fundamental entity is an s-question, corresponding to a statement 
about the I/O attributes of the system. Just like questions, the s-questions 
have answers that are either 'yes' or 'no' when pertaining to one concrete 
instance of the system. The s-question is true if the answer is 'yes' in all 
instances of the ensemble of systems that passed a given filter. If 'no' is 
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possible, the s-question is not true. The s-questions test properties of  the 
system, rather than values of  a variable. A property is actual if the correspond- 
ing s-question is true, in the other case it is potential. Let % denote the set 
of all s-questions that may be asked about the system. All knowledge of the 
system stems then from knowledge of the map % • I1 --+ {0, 1 }. However, 
the sets % and I1 are too large. Denote by n-r(e) the answer (1 or 0 for 'actual '  
or 'potential ')  to question e if the system was prepared by qv. There exist 

equivalences ~ and ~p defined by 

el, e2 ~ ~: el e e2C=>Vq'r E II: "rr(el) = "rr(e2) (12) 

"rl'l, "rr 2 E l~: 'rr I "~p q'r 2 ~ V e  e %: v~(e) = "rr2(e ) (13)  

Equivalences lead to reductions to quotient sets, and we call ~ = %/e the 
set of all propositions, and S o = II/E the set of all states. The set ~ is 
endowed with a lattice structure. The logic of the system is a complete 
orthocomplemented lattice. A typical proposition is -rr ~ (u +, y+): If prepared 
by "rr, the (next) input u + generates output y+. 

The main implication is that for a repeatable experiment (deterministic 
system), there exists a subensemble of  systems whose members give identical 
input-output behavior. This means that we can characterize such a subensem- 
ble by afi l ter (dl . . . . .  dr) for some T and data {d~}. In other words, ( d l ,  

. . . .  dr) and ur+l completely determine Yr+l. The string (dl . . . . .  dr) has an 
ontological meaning, and the property (u +, y+) is called classical. Cartan's 
isomorphism shows that 2~ is a Boolean lattice (Piron, 1990). 

For a nonrepeatable experiment (stochastic system), there does not exist 
a finite T such that the filter (dl . . . . .  dT) specifies YT+I uniquely, given Ur+l. 
The properties ~r -o  (u +, y+) are not classical in the sense of  Piron. Here one 
could deny reality to all (dl . . . . .  dr) since it has no meaning as system state, 
apart from conditioning (i.e., the filter itself in the kinematics). The only 
statements that can be made are statements about relative frequencies, which 
in fact require infinite data, and are therefore again not physical. It follows 
the newer thought to conclude that there are no classical properties, except 
for the 0 and 1. 

Consider again the ensemble (set of instances of  the same system), and 
let it be prepared by the filter ~r = (dl . . . . .  dr). Due to measurement 
inaccuracies, the property w ~ (u +, y+) may be true for some of the instances 
and not for others. In order to measure our "belief" in a model (based on 
the total available data set), we shall put a measure on the proposition lattice. 
It allows the evaluation of our subjective uncertainty regarding the dynamics 
of the system, since the proposition ~r = (d~, d 2 . . . . .  dr) ~ (u +, y+) is in 
fact a statement regarding the (potential) state transition u+: rr --+ rr' = (d2, 
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d3 . . . . .  dT, dr+0, where dr+l = (u +, y+). These state transition propositions 
are represented as filters (dl, d2 . . . . .  dT, dr+l) E D T+l, where Vi,  di ~ D = R ~. 

Implications 

For a single data sequence (all, d2 . . . . .  alL), where L is finite, consider the 
f i l trat ion,  i.e., a sequence of successively refining filters ( :  potential states) 

f d , ] ,  da , . . .  (14) 
d,, [d2J [d J 

and create the 'artificial' ensembles fabricated by time shifting subsequences 
of a single sequence. 

If a T exists such that the potential state (dl . . . . .  tiT) characterizes the 
I/O behavior completely, then the logic is Boolean, and can be represented 
by subsets of a set (embedded in R aT where 8 = dim d). The measures on 
this space (of subsets) are Kolmogorovian. With a data matrix 

X : [ x i ,  x 2 . . . . .  XN] , X i = (15) 
di+ - 1 

the data-induced measures are of the count ing form 

N~i { ;  ifXi E S (16) (x(S) = 1 ~xi(S), (xi(S) : Xs(Xi) : o t h e r w i s e  

The dynamic model u+: w ~ "n "+ is determined by selecting for each state w 
the subset  of D T+l in a model class which has the largest measure (the most 
points). If one chose the LTI model class, a suitable class of sets is the set 
of wedges bounded by two hyperplanes. The angle between the wedges 
relates to the to lerated misf i t  in the model. 

If there does not exist a T such that a potential state (filter) (dl . . . . .  
dT) characterizes the input-output behavior completely (i.e., the stochastic 
case), then the logical 1 and 0 are the only classical properties. The corres- 
ponding lattice is then a purely  quan tum lattice. The logic is represented by 
~ r o j ( ~ ) ,  the set of closed subspaces of a Hilbert space ~ .  The positive- 
valued measures are the Gleason measures:  Consider a single data vector x 
E R aT The data-induced vector measure (orthogonally scattered measure) is 

~:  ~Proj(]~ ~T) ---> Rs:~: ~(S) = pSx (17) 

where ps  is the projector onto the subspace S. The induced positive-valued 
measure is then 
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~x(s)  = II~x(S)ll 2 = Tr  pSxx'  (18) 

For a data matrix (many parallel experiments), let 

X = [xl, x2 . . . . .  XN] = ~ Xi | ei (19) 
i 

One gets a positive-valued measure by a coherent superposition: 

{x(S) = ~ {x/(S) @ e i (20) 
i 

~ ( s )  = II~x(S)l[ 2 = Tr pS ~ xix; = Tr p s x x '  = Tr psr  x (21) 
i 

Note that Tx is the (unnormalized) density operator, and it is quadratic in 
the data. 

The introduction of the orthogonally scattered Gleason (OSG) measures 
is dictated by the necessity of considering a quantum logic for a nonrepeatable 
experiment. In turn, nonrepeatability and therefore lack of exact predictability 
is a fundamental attribute of what is usually referred to as stochasticity. It is 
therefore perhaps not surprising that other standard methods in time series 
analysis can also be related to quantum structures and concepts. In Verriest 
and Finkelstein (1991) principal component analysis (also known as Karhu- 
nen-Lohve) and canonical correlation analysis were related to the maximiza- 
tion, under various constraints, of the RV coefficient of multivariate statistics, 
which is readily interpreted in terms of quantum structures and data measures. 

Let a data matrix X be given and partitioned into 'past' and 'future': 

kXfutureJ 

Letting Tx = XX' be the unnormalized density matrix, one finds for W and 
pr, respectively the projectors onto 'past' and 'future': 

Tr TI2 T2! 
RV('past ' , ' future') = (Tr T~i Tr T22) 1/2 (22) 

IlPpTxp,rH 2 

= IlP"Txll  IlPrTxll (23) 

(~x(PP), ~x(Pt)) 2 

= II ~x(Pp) II 2 II ~x(Pt)II 2 (24) 

= p(~x(PP), ~x(Pf)) 2 (25) 

The RV coefficient of past and future is the square of the correlation coefficient 
between the data-induced OSG measures on the past and the future. 
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